Skip to main content

Robots Everywhere: Robots in space exploration

Welcome to another edition of Robots Everywhere, a show that chronicles the slow but steady takeover of our future robot overlords, and shows you how they’re making their way into practically every facet of modern life. On this episode, we take a look at robots in space, and how different types of automated machines and robots are helping us explore the surface of Mars, as well as land here back on earth.

There are three categories of robots we’ll be looking at when it comes to space: Explorer bots, helper bots, and automated systems. Each of these categories is made for a distinct purpose, and while some look more like traditional robots than others, all work with little to no human input.

First off are the explorer robots. Because space and other planets aren’t very hospitable to humans, we have been using robot explorers to help us gather information about distant planets, moons, and asteroids while we stay safely here on earth. The most well-known of these explorer robots are the ones we’ve sent to Mars. In 1997, the Sojourner robot — weighing in at 23 pounds and rolling at a top speed of 0.02 miles per hour — was the first of five different explorer robots sent to Mars. It lasted about 85 days and made it about 100 yards before running out of juice.

After that, two more explorer robots, Spirit and Opportunity, were sent with the mission of finding evidence of water. Within months, the rovers succeeded, and we now know Mars did, indeed, have plentiful water on its surface. The Curiosity rover was sent in 2012, and was a far bigger rover than the ones before it, carrying even more scientific instruments. Its goal was to determine if Mars had all the ingredients necessary to host life: A lasting source of water and the chemical ingredients known to be the precursors of life. Curiosity is still roving around, sending pictures directly to its own Twitter account.

Currently on its way to Mars is the new Perseverance rover, the biggest, heaviest, and most advanced rover ever sent. Instead of just looking for water and other preconditions of life, Perseverance will hunt for direct evidence that life existed on the red planet.

Another category of space robots is the “helper bots.” These assist astronauts perform tasks that are too dangerous or difficult for the astronauts to do themselves, from complex docking maneuvers, to handling payload, to essentially acting as a floating space Amazon Echo for crew members.

Finally, we have automated systems that can operate with little to no human input. While we may not think of these machines as traditional robots, because they can act and move autonomously, they are, by definition, robotic. The Mars Pathfinder spacecraft is a good example. Because of the communication lag between Earth and Mars, automated systems were used to land and navigate the craft by itself. Similarly, SpaceX is currently using automated “robotic” systems to land its Falcon 9 rockets.

The trend of robots taking the reigns and playing a bigger role in space exploration isn’t going to change any time soon. Robots already outnumber humans in space, and it will be increasingly advanced robots that we send in the future. Because of the limitations of our physical bodies and lifespan, robotic systems are the perfect way to help gather information that would be impossible for us humans.

Todd Werkhoven
Todd Werkhoven's work can be read at numerous publications and he co-authored a personal finance book called "Zombie…
Satellite snaps remarkable image of a huge piece of space junk
A depiction of space junk in low-Earth orbit.

The space junk photographed by Astroscale's satellite shows the upper stage of a rocket that's been orbiting Earth for the last 15 years. Astroscale

Orbital debris removal company Astroscale has shared a remarkable image captured by the Active Debris Removal by Astroscale-Japan (ADRAS-J) satellite.

Read more
Auroras and radiation from solar storms spotted on Mars
The specks in this scene were caused by charged particles from a solar storm hitting a camera aboard NASA’s Curiosity Mars rover. Curiosity uses its navigation cameras to try and capture images of dust devils and wind gusts, like the one seen here.

The specks in this scene were caused by charged particles from a solar storm hitting a camera aboard NASA’s Curiosity Mars rover. Curiosity uses its navigation cameras to try and capture images of dust devils and wind gusts, like the one seen here. NASA/JPL-Caltech

The recent solar storms caused epic events here on Earth, where auroras were visible across much of the globe last month. These storms, caused by heightened activity from the sun, don't only affect our planet though -- they also affect Mars. NASA missions like the Curiosity rover have been observing the effects of solar storms there, where the very thin atmosphere creates a potentially dangerous radiation environment. If we ever want to send people to visit the red planet, we're going to need to learn more about this radiation and how it's affected by events like solar storms.

Read more
Data from Inspiration4 astronauts suggests short space trips aren’t harmful to health
SpaceX's Inspiration4 crew in orbit.

New research that was conducted on the four civilian astronauts of the Inspiration4 mission shows the effects of short-duration spaceflight on the human body. Though a very small sample size of just four people, researchers hope that this work can indicate that private spaceflight does not pose a health risk to potential astronauts.

The four members of the Inspiration4 crew launched in September 2021 and spent three says in space, visiting low-Earth orbit. That makes their experiences comparable to astronauts on the International Space Station (ISS) in terms of their exposure to space radiation, the researchers say. Over 100,000 pieces of health-related data were collected from the crew, seeing how their bodies responded to time in space.

Read more