Skip to main content

The key to building a habitat on Mars? Insect exoskeletons, apparently

What should we build our shelters from when we finally send a crewed mission to Mars? If researchers from the Singapore University of Technology and Design are to be believed, the answer is simple: A combination of Martian soil and chitin, a primary component in seashells, insect exoskeletons, and fungi walls. These basic building blocks could provide a replenishable material for making rigid shelters that can support humans on the Red Planet.

“[Sustainability is] a key factor of our research,” Javier Gomez Fernandez, one of the researchers on the project, told Digital Trends. “Production scales with waste … Therefore the system scales with the population: The more [humans], the larger is the ecosystem, the larger the production of chitin from waste processing, the more material you can produce. This is the opposite to the current Earth paradigm, where the more you produce, the more resources you deplete, and the more waste you generate.”

Researchers have been working on similar bio-inspired manufacturing process for sustainability on Earth for a decade. However, in a new paper published in the journal PLoS ONE, Fernandez and colleagues describe how the material could be just perfect for life on Mars. The chitin they propose could come from insects, which may also double as a valuable source of protein for the long space journey. This chitin can then be combined with Martian soil to create the finished building material, without requiring much in the way of energy or specialist equipment.

Mars habitat
Javier Fernandez

Building on a dead rock in space

In an abstract describing their work, the researchers write that, “Given plans to revisit the lunar surface by the late 2020s and to take a crewed mission to Mars by the late 2030s, critical technologies must mature. In missions of extended duration, in situ resource utilization is necessary to both maximize scientific returns and minimize costs. While this [presents] a significantly more complex challenge in the resource-starved environment of Mars, it is similar to the increasing need to develop resource-efficient and zero-waste ecosystems on Earth.”

There are, of course, a few differences, which the researchers are now investigating. These include how the material will likely hold up when interacting with the radiation, low pressure, and low temperatures of Mars. Because nobody wants to spend a couple of years flying to Mars, eating bugs along the way, only to build a house made of recycled bugs that instantly falls apart.

Fernandez continued: “The material presented here is developed for a Martian ecosystem as a way to challenge our technology to its extreme, by applying it to develop circular sustainable manufacturing on the worst possible scenario: A dead rock in space.”

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Watch Sierra Space blow up its LIFE habitat in dramatic pressure test
sierra space blows up life habitat in pressure test

The moment that Sierra Space's LIFE module explodes. Sierra Space

With the aging International Space Station (ISS) facing a fiery end about seven years from now, attention has been turning to new designs to replace the orbital outpost.

Read more
NASA regains communications with Mars helicopter Ingenuity
The Ingenuity helicopter is pictured on the surface of Mars.

Just a few days after losing contact with the Mars helicopter Ingenuity, NASA announced that it has regained communications with the plucky little helicopter. In a post on X (formerly Twitter), NASA's Jet Propulsion Laboratory, which designed and operated the helicopter, announced that it is back in touch following an unexpected communications dropout.

The Ingenuity helicopter is pictured on the surface of Mars. NASA

Read more
NASA has lost communication with the Ingenuity Mars helicopter
NASA’s Ingenuity Mars helicopter is seen here in a close-up taken by Mastcam-Z, a pair of zoomable cameras aboard the Perseverance rover. This image was taken on April 5, the 45th Martian day, or sol, of the mission.

The Mars helicopter Ingenuity has had a remarkable lifespan and has proven to be a greater success than anyone imagined. Originally designed to perform just five flights over the surface of Mars, the helicopter has now performed more than 70. However, NASA has now announced that it has lost contact with the helicopter, though it's unclear how serious this problem is.

The helicopter was performing its 72nd flight, which was an adjustment and correction to a previous flight that was cut short. Flight 71 was intended to be a journey of 1,175 feet (358 meters), but when the helicopter made this flight earlier in the month, it traveled just a third of that. The problem was related to its downward-facing camera, which uses surface indications for autonomous navigation. The helicopter was traveling over a particularly featureless expanse of the surface, and the lack of landmarks appeared to cause a problem with its navigation, forcing the flight to end early.

Read more