Skip to main content

James Webb image shows the bright glowing heart of a galaxy

Astronomers recently shared a stunning new image of space from the James Webb Space Telescope, showing a galaxy with an unusually bright heart.

This new image is of a galaxy called NGC 7469, located 220 million light-years away in the constellation of Pegasus. It is a spiral galaxy, like our Milky Way, and is positioned such that it appears directly face-on to us. As well as this main galaxy, you can also see more distant galaxies in the background, as well as a companion galaxy NGC 5283 which is visible toward the bottom left of the image.

NGC 7469, a luminous, face-on spiral galaxy approximately 90 000 light-years in diameter that lies roughly 220 million light-years from Earth in the constellation Pegasus. Its companion galaxy IC 5283 is partly visible in the lower left portion of this image.
This image is dominated by NGC 7469, a luminous, face-on spiral galaxy approximately 90 000 light-years in diameter that lies roughly 220 million light-years from Earth in the constellation Pegasus. Its companion galaxy IC 5283 is partly visible in the lower left portion of this image. ESA/Webb, NASA & CSA, L. Armus, A. S. Evans

Perhaps the most noticeable feature of the image is the bright red star shape beaming out from the center of the galaxy, called the active galactic nucleus or AGN. This region is extremely bright as dust swirls around the supermassive black hole at the galaxy’s center, eventually falling in and giving off heat and light as it does.

“A prominent feature of this image is the striking six-pointed star that perfectly aligns with the heart of NGC 7469,” Webb scientists explain. “Unlike the galaxy, this is not a real celestial object, but an imaging artifact known as a diffraction spike, caused by the bright, unresolved AGN. Diffraction spikes are patterns produced as light bends around the sharp edges of a telescope. Webb’s primary mirror is composed of hexagonal segments that each contain edges for light to diffract against, giving six bright spikes. There are also two shorter, fainter spikes, which are created by diffraction from the vertical strut that helps support Webb’s secondary mirror.”

This region was studied using three of Webb’s instruments, the Mid-Infrared Instrument (MIRI), the Near-Infrared Camera (NIRCam), and the Near-Infrared Spectrograph (NIRSpec). This AGN is special because close by it hosts a starburst region, where stars are being formed at a fast rate. The research using Webb aims to investigate the relationship between this AGN and the nearby starburst region, and the role played by the dust between the two.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more
Hubble images the spooky Spider Galaxy
This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829.

This week's image from the Hubble Space Telescope shows an irregular galaxy, the spindly arms and clawed shape of which has led to it being named the Spider Galaxy. Located 30 million light-years away, the galaxy also known as UGC 5829 is an irregular galaxy that lacks the clear, orderly arms seen in spiral galaxies like the Milky Way.

This image from the NASA/ESA Hubble Space Telescope shows the irregular galaxy UGC 5829. ESA/Hubble & NASA, R. Tully, M. Messa

Read more
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more