Skip to main content

James Webb and Keck Observatory see clouds on Saturn’s moon Titan

Researchers using the James Webb Space Telescope and the W. M. Keck Observatory have teamed up to study Saturn’s largest moon, Titan, and observe the way that clouds move around it. Early preview results of this research have now been released, which have not yet been peer-reviewed.

By bringing together space-based observations and ground-based observations, researchers were able to see how the clouds changed. Webb gathered data in the infrared using its Near-Infrared Camera (NIRCam) instrument, and Keck provided confirmation images also in the near-infrared two days later. “We were concerned that the clouds would be gone when we looked at Titan one and two days later with Keck, but to our delight there were clouds at the same positions, looking like they might have changed in shape,” said Keck researcher Imke de Pater in a statement.

Near-infrared Images of Saturn’s moon Titan, as seen by JWST on November 4, 2022 (left), followed by Keck Observatory’s NIRC2 instrument paired with adaptive optics on November 6, 2022 (middle) and November 7, 2022 (right).
Near-infrared Images of Saturn’s moon Titan, as seen by JWST on November 4, 2022 (left), followed by Keck Observatory’s NIRC2 instrument paired with adaptive optics on November 6, 2022 (middle) and November 7, 2022 (right). NASA/STScI/W. M. Keck Observatory/Judy Schmidt

The researchers were hoping to learn about Titan’s climate, and they found that there were large clouds in the moon’s northern hemisphere. “Detecting clouds is exciting because it validates long-held predictions from computer models about Titan’s climate, that clouds would form readily in the mid-northern hemisphere during its late summertime when the surface is warmed by the Sun,” said lead researcher Conor Nixon. Some of these clouds are located near Kraken Mare, a sea of liquid methane on the moon’s surface.

Titan is of interest to astronomers because of its thick atmosphere, and because it has lakes, rivers, and oceans on its surface. But unlike Earth, these features are made of liquid methane rather than water. The amount of liquid means that Titan could even be a place to look for signs of life, and there is interest in sending a submarine probe there.

There are also plans to send a rotorcraft called Dragonfly to explore the moon, currently set for launch in 2027. Observations like these recent ones from Webb and Keck help prepare the way for this mission.

“This is some of the most exciting data we have seen of Titan since the end of the Cassini-Huygens mission in 2017, and some of the best we will get before NASA’s Dragonfly arrives in 2032,” said Dragonfly’s principal investigator, Zibi Turtle. “The analysis should really help us to learn a lot about Titan’s atmosphere and meteorology.”

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more
See what James Webb and Hubble are observing right now with this tool
james webb hubble live tracker screenshot 2024 03 06 220259

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more